a2 United States Patent

Chakraborty et al.

US009176732B2

US 9,176,732 B2
Nov. 3, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

METHOD AND APPARATUS FOR MINIMUM
COST CYCLE REMOVAL FROM A
DIRECTED GRAPH

Applicant: Oracle International Corporation,
Redwood City, CA (US)
Inventors: Ashutosh Chakraborty, Austin, TX
(US); Wonjoon Choi, Austin, TX (US);
Duo Ding, Austin, TX (US); Rajendran
Panda, Round Rock, TX (US)
Assignee: QOracle International Corporation,
Redwood City, CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 88 days.

Appl. No.: 14/012,799

Filed: Aug. 28,2013

Prior Publication Data

US 2015/0067644 A1l Mar. 5, 2015

Int. CI.
GOGF 9/44
GOGF 11/36
GOGF 9/45
GOGF 17/50
USS. CL
CPC GOGF 8/75 (2013.01); GO6F 11/36 (2013.01);
GOGF 8/433 (2013.01); GOGF 8/443 (2013.01);
GOGF 9/44 (2013.01); GOGF 9/4433 (2013.01);
GOGF 17/50 (2013.01); GOGF 17/5009
(2013.01)

(2006.01)
(2006.01)
(2006.01)
(2006.01)

Field of Classification Search
CPC ... GO6F 17/50; GO6F 17/505; GO6F 17/5009;
GOG6F 8/75; GO6F 8/433; GOG6F 8/443; GO6F

11/36; GO6F 11/206; GOGF 9/44; GOG6F 9/4433
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,663,891 A * 9/1997 Bamjietal. ... 716/122

7,478,375 B1* 12009 Kersters 717/144
2003/0221182 Al* 11/2003 Tipetal. 717116
2005/0182708 Al* 82005 Moudgalc.ccoovnirnnn 705/38
2007/0052705 Al* 3/2007 Oliveiraetal. 345/423
2010/0107137 Al* 42010 Trefleretal. .. . 7177111
2013/0024561 Al* 1/2013 Imai 709/224
2014/0095125 Al* 4/2014 Nachbagauer 703/2

* cited by examiner

Primary Examiner — Van Nguyen
Assistant Examiner — Tina Huynh
(74) Attorney, Agent, or Firm — Polsinelli PC

(57) ABSTRACT

Implementations of the present disclosure involve a system
and/or method for minimum cost cycle removal from a
directed graph. The system determines if a provided graph
contains any cycles by assigning each vertex an integer value
and comparing the integer values of vertices connected by an
edge. When the value of a starting vertex is greater than an
ending vertex, a cycle is present. The system then determines
which edges may be removed in order to minimize the cost of
breaking the cycle. The system generates a linear cost func-
tion that is equal to the sum of a cost to remove an edge
multiplied by a corresponding binary variable. Constraints
are generated to ensure that the result does not have any
cycles. The system then solves for the minimum of the linear
cost function by utilizing the constraints. The value of the
binary variables may then be used to determine which edges
to remove.

19 Claims, 6 Drawing Sheets

410

[RECEIVE WEIGHTED DIRECTED GRAPH

—,

420

[ASSIGN VERTICES AN INTEGER VALUE

[ASSIGN EDGES A BINARY VARIABLE

440

BE MINIMIZED THAT IS A FUNCTION OF
THE SUM OF EACH BINARY VARIABLE

GENERATE LINEAR COST FUNCTION TO
MULTIPLIED BY A REMOVAL COST

450

FUNCTION OF EACH VERTEX INTEGER

GENERATE CONSTRAINTS THAT ARE
VALUE AND THE BINARY VARIABLE

460

SoLvE For EDGES TO REMOVE TO
MINMIZE COST

U.S. Patent Nov. 3, 2015 Sheet 1 of 6 US 9,176,732 B2

[100

115

120

FIG. 1

U.S. Patent Nov. 3, 2015 Sheet 2 of 6 US 9,176,732 B2

sz

J

* J 220

ASSIGN VERTICES AN INTEGER VALUE

J

* J 230

SUBTRACT INTEGER VALUE OF A FIRST
VERTEX FROM A SECOND VERTEX,

WHERE THERE IS AN EDGE STARTING AT

THE FIRST VERTEX AND ENDING AT THE
SECOND VERTEX)

RECEIVE DIRECTED GRAPH

N)

(

{— 250

DETERMINE WHICH
EDGE(S) TO REMOVE

Second Vertex >
First Vertex?

Yes .
More Vertices?

270

No CYCLES PRESENT

FIG. 2

U.S. Patent Nov. 3, 2015 Sheet 3 of 6 US 9,176,732 B2

[300

310
305 a 335
5) 315
0 330
345 2 340
3\
LN 320
355 325
2!

350

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 6 US 9,176,732 B2

410

—L{

E?ECEIVE WEIGHTED DIRECTED GRAPH

y

[ASSIGN VERTICES AN INTEGER VALUE

Y

[ASSIGN EDGES A BINARY VARIABLE

Y

[—]ENERATE LINEAR COST FUNCTION TO

420

430

A«

440

BE MINIMIZED THAT IS A FUNCTION OF
THE SUM OF EACH BINARY VARIABLE
MULTIPLIED BY A REMOVAL COST

Y

[GENERATE CONSTRAINTS THAT ARE A

—L

450

FUNCTION OF EACH VERTEX INTEGER
VALUE AND THE BINARY VARIABLE

v

[SOLVE FOR EDGES TO REMOVE TO

460

MINIMIZE COST

k_«_/‘ﬁ

FIG. 4

U.S. Patent Nov. 3, 2015 Sheet 5 of 6 US 9,176,732 B2

310
305 e
315
o}
a 330
345 2 340
3\
LN 320
355 325
2

350

FIG. 5

US 9,176,732 B2

Sheet 6 of 6

Nov. 3, 2015

U.S. Patent

9 'Old

009
¥3LNdWOD 3SOdHNd TVHINIO
099 /— —
JHOVO —
\ V1va WvH90dd
0%9 y— —
JOV4HILNI MHOMLIAN L 989
S3TNAOW WYHO0Hd ¥IHLO
079 /—
1¥0d vI¥3s/asn —/] 069 /1 789
sSng WILSAS IVACOWTH 31DAD
WALSAS NV
0e9 yf—
MSIA YOI LdO — 789
NILSAS ONILYHIJO
029 /f— | \——————————————__
(AHOW3IW LNVLSISHAd) N—/
AAIYA HSY14/AAIEA QHVH 779
solg
019 /— | | Y]
Ndo)
\ AJONIN INTLSAS

US 9,176,732 B2

1
METHOD AND APPARATUS FOR MINIMUM
COST CYCLE REMOVAL FROM A
DIRECTED GRAPH

FIELD OF THE DISCLOSURE

Aspects of the present disclosure relate to directed graphs.
More particularly, aspects of the present disclosure involve an
apparatus and method for removing cycles from a directed
graph at a lowest possible cost.

BACKGROUND

Software applications generally have a series of operations
that are performed both sequentially and in parallel. Often-
times, an operation will depend on a result from one or more
other operations. Problems arise when a set of operations
become interdependent on each other, where a first operation,
directly or through intermediate operations, depends on the
output of another operation, which in turn depends directly or
through intermediate operations, on the first operation. These
interdependencies can cause an application to fall into infinite
loops where each operation is waiting for results from one or
more other operations. These dependencies may be repre-
sented as a directed graph.

A directed graph is a structure containing a set of vertices,
connected by edges that have a direction. Graph traversal is
the process of visiting all of the vertices in the graph. The
graph may be traversed by starting at one of the vertices and
following the edges until each vertex that is reachable from
that vertex has been visited. In the case of disconnected
graphs, one may need to start traversal from various vertices.
A cycle in a directed graph refers to a loop in the graph such
that when traversing the edges away from a vertex, eventually
we come back to the same node.

Referring to FIG. 1, a directed graph 100 is depicted. The
directed graph includes three vertices 110, 115, 120 con-
nected by three directed edges 125, 130, 135. The direction of
each edge is indicated by an arrow atthe end of each edge. The
depicted graph 100 also forms a cycle starting at vertex A 110,
traveling from vertex A 110 to vertex B 115 over edge AB
125, traveling from vertex B 115 to vertex C 120 over edge
BC 130, and returning to vertex A 110 over edge CA 135.

Inthe context of software, vertex A (110) may signify a first
operation, vertex B (115) may signify a second operation, and
vertex C (120) may signify a third operation. The edges AB
(125), BC (130), and CA (135) may signify dependencies
between the operations. Thus, the first operation (vertex A)
requires a result from the third operation (vertex C), the
second operation (vertex B) requires a result from the first
operation (vertex A), and the third operation (vertex C)
requires a result from the second operation (vertex B). Thus,
none of the operations can be completed because each opera-
tion is dependent on another operation resulting in an infinite
loop.

Applications that fall into infinite dependency loops are
often configured to automatically break out of these loops by
removing a dependency (an edge in a graph) and accepting
any repercussions caused by removing the dependency. In
many instances, breaking a cycle does not cause an applica-
tion to fail when run, but instead introduces inaccuracy into
the analysis that the application was intended to perform. In
cases where the options are for the application to be stuck in
an infinite loop or for the application to produce a less accu-
rate result, the less accurate result is the more desirable
option.

10

40

45

50

55

2

Static timing analysis applications sometimes have issues
related to dependency loops. Static timing analysis is related
to computing the expected timing of a digital circuit. When
designing a digital circuit, the designer must account for the
various delays between different circuit elements so that the
results of a series of operations in the circuit arrive at a
destination at the correct time based on a clock signal. Since
processing signals within a circuit may have dependencies on
other signals, timing of the signals is critical. Similar to the
hypothetical application above, the digital circuit may be
depicted as a directional graph. In some cases, the digital
circuit may have cycles leading to infinite dependency loops.
In order to perform static timing analysis, the infinite loops
must be broken at the expense of reduced accuracy.

Another example is in the field of datapath placement. A
datapath includes a set of functional units connected to a
system bus that operate to perform data processing opera-
tions. Similarly to the examples provided above, the datapath
placement may include interdependencies between opera-
tions which may lead to loops if the function performing the
operations needs to be placed in the direction of data flow, and
if the data has a cyclic dependency. Again, by breaking the
loop, a valid placement is obtained at the cost of increased
inaccuracy of mimicking the data flow.

Itis with these and other issues in mind that various aspects
of the present disclosure were developed.

SUMMARY

Implementations ofthe present disclosure involve a system
and/or method for minimum cost cycle removal from a
directed graph. More specifically, the system and method
allow for the determination of whether a directed graph con-
tains any cycles and then finding a subset of edges that may be
eliminated from the graph to remove all the cycles from the
graph at a minimum cost. The determination of the existence
of a cycle involves associating each vertex with an integer
value and comparing the integer values of each pair of verti-
ces that are connected by an edge. The integer values are
assigned such that, if there is an edge from vertex A to vertex
B, then the integer assigned to vertex A is smaller than the
integer assigned to vertex B. If such an assignment of integers
can be done on the whole graph, the graph is cycle free.
However, if there are one or more cycles in the graph, such an
ordering cannot be obtained. In such a case, the proposed
method removes one or more edges from the graph, such that
the aforementioned assignment of integers can be still per-
formed on the resultant graph, thus rendering it cycle free.
The proposed method reduces the inaccuracy that such cycle
removal introduces in various applications.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example of a
directed graph featuring a cycle.

FIG. 2is ablock diagram illustrating an example method of
detecting a cycle in a directed graph.

FIG. 3 is a block diagram illustrating an example directed
graph that has multiple cycles.

FIG. 4is ablock diagram illustrating an example method of
determining a minimum cost edge or edges to remove from a
directed graph in order to break each cycle in the directed
graph.

FIG. 5 is a block diagram illustrating an example directed
graph with multiple cycles removed.

US 9,176,732 B2

3

FIG. 6 is a block diagram illustrating an example of a
general purpose computing system that may be used in the
application of the present disclosure.

DETAILED DESCRIPTION

Implementations of the present disclosure involve a system
and/or method for minimum cost cycle removal from a
directed graph. In particular, the present disclosure provides
for a system and method for determining whether a directed
graph contains at least one cycle and then determines which
edges can be removed so that all cycles are removed. The
removal of cycles may be done in such a way such that edges
are removed to minimize cost, where cost is associated with
an actual cost, a performance decrease, an importance of an
edge, or any other metric. For example, the directed graph
may be a weighted directed graph where each edge is
weighted according to a level of importance or a cost of
removal of the edge. The system may then evaluate the edges
and determine which edge or combination of edges, when
removed break all the cycles in the graph at the lowest cost.

Referring now to FIG. 2, amethod for determining whether
a directed graph contains at least one cycle is depicted. The
system receives a directed graph that includes at least two
vertices and at least two edges (operation 210). The received
directed graph may include any type of directed graph, and
the vertices and edges in the directed graph may represent a
series of operations in a software application, such as a soft-
ware application configured to perform static timing analysis.
In another example, each node in the graph may represent a
functional unit in a datapath, such as an arithmetic logic unit
(ALU), a binary multiplier, a digital logic circuit, or any other
digital or analog circuit.

Referring now to FIG. 3 and with continued reference to
FIG. 2, each vertex in the directed graph 300 may be assigned
an integer value (operation 220). In the graph 300, vertex A
(305) has been assigned an integer value of 1, vertex B (310)
has been assigned an integer value of 2, vertex C (315) has
been assigned an integer value of 3, vertex D (320) has been
assigned an integer value of 4, and vertex E (325) has been
assigned an integer value of 5. Although in this example the
values selected started at one and incremented by one, the
system is not limited by the starting integer or how the inte-
gers are incremented. The first vertex assigned an integer
value may be a first or starting vertex in a graph, or it may be
randomly selected. Subsequent integer assignment should
continue by traversing the graph along the directed edges. For
example, in FIG. 3, vertex A (305) was assigned the value of
1. When traversing the graph 100 along the directed edges, the
next vertex is vertex B (310), followed by vertex C (315), then
vertex D (320), and vertex E (325). Vertices D and E are both
then connected back to vertex A (305).

The system may analyze the graph by comparing the inte-
ger values of vertices that are connected by an edge (operation
230). When there is an edge directed from a first vertex to a
second vertex, then the integer value of the second vertex
must have a higher value than the first vertex. The graph
contains a cycle when the value of the first vertex is higher
than the second vertex. Graph 300 includes six edges. Thus,
up to six comparisons may be made in order to determine if
any cycles are present. Starting at the first vertex, for example,
vertex A (305), the value at the first vertex is compared to an
integer value at the second vertex (vertex B 310). In this
example, vertex B (310) has a value of 2 and vertex A (305)
has avalue of 1. Thus, B>A and a cycle has not been identified
(operation 240). The system may then determine whether
more edges are present that have not been analyzed (operation

10

15

20

25

30

35

40

45

50

55

60

65

4

260). If no more edges are present, and no cycles have been
identified, then the graph is cycle-free and the system may
analyze another directed graph or exit (operation 270). In this
example, there are five remaining edges, edge BC (335), edge
CD (340), edge DA (345), edge DE (350), and edge EA (355).
Continuing the analysis of the remainder of the graph 300,
Vertex B (310) has a value of 2 and vertex C (315) has a value
of'3. Thus, a cycle has still not been detected. Turning to the
next vertex C (315) has a value of 3 and vertex D (320) has a
value of 4. Skipping to edges DA (345) and EA (355), these
edges each form a cycle. Applying the analysis, vertex D
(320) has a value of 4, while vertex A (305) has a value of 1.
Here, the first vertex (vertex D 320) has a greater value than
the second vertex (vertex A 305). Thus, the presence of a cycle
has been detected and the system determines which edge(s)
should be removed to remove the cycle (operation 250). Simi-
larly, vertex E (325) has a value of 5, while vertex A (305) has
avalue of 1. The graph 300 therefore has two cycles that both
need to be removed.

Referring now to FIG. 4, and with continued reference to
FIG. 3, a method of determining which edge or edges to
remove in order to minimize cost is depicted. Once one or
more cycles have been identified in the directed graph, the
system determines which edge or edges may be removed in
order to break the cycles. Since the graph is a representation
of operations in a system, each edge may have a value indi-
cating the importance of that edge or the cost of removing that
edge to the system. The system receives the directed graph
300, including any edge weights (operation 410). The edge
AB (330) has an edge weight of 5, the edge BC (335) has an
edge weight of 2, the edge CD (340) has an edge weight of 9,
the edge DA (345) has an edge weight of 3, the edge DE (350)
has an edge weight of 2, and the edge EA has an edge weight
of 1. If, for example, the directed graph represents a datapath,
each vertex may be associated with a functional block and
each edge may represent a connection for the movement of
data. The value or cost of an edge may then be associated with
the amount of data that is being passed from a first vertex to a
second vertex. For example, if on average “X” bits are sent by
operation “A” for use by operation “B”, then the value of the
edge AB may be set at X. Thus, the cost to break the edge
between A and B is equivalent to the penalty that the system
will encounter due to the break, in this case X bits are lost. In
some cases, each edge may be equally important and may
therefore all have the same weights. If the directed graph does
not include any edge weights, the system may assign an equal
edge weight to each edge.

Similar to the determination of whether the graph contains
a cycle, the system may assign each vertex an integer value
(operation 420). As with the determination of whether a cycle
exists, these integer values may be used for determine the
presence of cycles. The assigned integer values may be the
same integer values assigned earlier, or may be a newly
assigned value. Referring again to FIG. 3, each of the vertices
has a set integer value.

In addition to an edge weight, each edge may also be
associated with a binary variable (operation 430). The binary
variable operates as Boolean variable that is used by the
system to indicate whether the edge should be removed. Ifthe
variable has a value of 1 or true, then the edge should be
removed. Ifthe variable has a value of O or false, then the edge
should be retained in the final cycle-free graph solution that is
being generated. The binary variables are set in order to
minimize a linear cost function according to a series of con-
straints.

The linear cost function is used to calculate the total cost
for removing the cycles and is equal to the sum of the cost to

US 9,176,732 B2

5

remove each edge multiplied by the binary variable for each
edge. In other words, the linear cost function is the total cost
to remove one or more edges written as the sum of the edge
weights each multiplied by their corresponding binary vari-
able. The total cost to remove the cycle(s) in a graph may
therefore be written according to equation 1.

L (65)]
TotalCost = Z Cost; * Break;
=1

where:

n=total number of edges

Cost,=the cost for breaking an edge

Break,=the binary variable for breaking an edge

The system minimizes the linear cost function in conjunc-
tion with the series of constraints to determine which edges
should be broken to eliminate the cycles from the graph at a
minimum cost. Applying this function to the values of FIG. 3,
results in Equation 2.

TotalCost=5*Break 4z+2*Breakz +9* Break -+

3*Breaky, ;+2*Break,z+1%Break;, 2)

The system also generates a series of constraints for pro-
ducing a graph without cycles (operation 350). The con-
straints may be modeled after the method of determining the
presence of a cycle by comparing the assigned integers at
each pair of vertices as described with reference to FIGS. 2
and 3, in combination with the binary variable used to indicate
when an edge is removed. The resulting constraint is shown in
Equation 3.

DestinationVertex Value—StartVertex Value+

Bre ea-kStartDest* Big>0 (3)

Where:

StartVertexValue=the integer value assigned to the vertex

where the edge starts from

DestinationVertex Value=the integer value assigned to the

vertex that the edge is directed to

break,,,,.n..—the binary variable designating whether the

edge will be removed

big=a suitably large number selected such that if break is

set to one, then the condition will be satisfied regardless
of the start and destination vertex values.

Each constraint compares the destination vertex’s start
integer value to the vertex’s integer value. If the starting
vertex has an integer value that’s greater than destination
vertex’s integer value, then the inequality is not true unless
the binary variable is set to remove the edge (Break=1). The
variable Big is set by the system to be larger than any possible
outcome of the subtraction of the start vertex value from the
destination vertex value. For example, in the graph 300, the
vertex E (325) has the largest integer value in the graph and
the vertex A (305) has the smallest integer value (5 and 1
respectively). Inthis case, ifthe value of the variable Big is set
to 100, then for any possible combination of start and desti-
nation vertices, the constraint equation will be satisfied if the
variable Break is set to 1. In many cases, it is advantageous to
select a value for Big that isn’t unnecessarily large. For
example, using needlessly large values of Big may cause for
extra computational cycles to be required to evaluate Equa-
tion 3. In one example, the value of big may be set to twice the
number of edges in the graph.

The system generates one constraint for each edge in the
graph. For example, again referring to the graph 300 depicted
in FIG. 3, there are six edges 330-355. There would therefore

10

15

20

25

30

35

40

45

50

55

60

65

6

be six constraints for the graph 300 and the value of the
variable Big may be set to 12. The resulting set of constraints
shown in Equations 4 may then be used as the set of con-
straints where Break,,, Breakg., Break., Break,,,
Break,,,, and Break,, are all either zero or one.

Vertex z— Vertex 4+Break 43%12>0
Vertex —— Vertex g+Breakz *12>0
Vertex 5,— Vertex ~+Break % 12>0
Vertex 4~ Vertexp+Breaky ,#12>0
Vertex z— Vertexp+Break,z*12>0

Q)

Once the linear equation and constraints have been gener-
ated, the system may solve for the values of each binary
variable that satisfy the constraints and produce the minimum
total cost to produce a cycle free graph (operation 360). This
may be accomplished by utilizing any method of minimizing
a linear equation according to constraints. For example, this
may be accomplished by iterating through each possible com-
bination of binary variables. Another way to solve for the
combination of edges to break is to utilize linear program-
ming.

Linear programming is generally directed towards achiev-
ing a best outcome for a mathematical model. A linear pro-
gram requires a linear equation to minimize (or maximize),
such as the one provided by Equation 1, constraints, such as
those provided by Equation 3, and at least one variable, such
as the binary variables. The linear program receives the total
cost equation and constraints and is able to return the values
of'the binary variables that result in the best outcome, here the
minimum total cost. The values of the binary variables may
then be used to determine which edges to remove. The edges
to be removed may then be provided to the system that is stuck
in an infinite loop. Thus, breaking the loop at a minimized
cost.

In the case of the graph 300, the system identifies which
edge or edges may be removed to break the cycles at a mini-
mum cost or reduced cost using linear programming. This
results in the identification and removal of edge BC (335).
FIG. 5, depicts the graph 500 which is the same graph as the
graph 300, except the graph 500 has had the edge BC (335)
removed. In this example, it is easy to see that edge BC (335)
is the best edge to remove since the cost to remove BC is only
2 and it eliminates both cycles.

FIG. 6 illustrates an example general purpose computer
600 that may be useful in implementing the described tech-
nology. The example hardware and operating environment of
FIG. 6 for implementing the described technology includes a
general purpose computing device in the form of a personal
computer, server, or other type of computing device. In the
implementation of FIG. 6, for example, the general purpose
computer 600 includes a processor 610, a cache 660, a system
memory 670, 680, and a system bus 690 that operatively
couples various system components including the cache 660
and the system memory 670, 680 to the processor 610. There
may be only one or there may be more than one processor 610,
such that the processor of the general purpose computer 600
comprises a single central processing unit (CPU), or a plural-
ity of processing units, commonly referred to as a parallel
processing environment. The general purpose computer 600
may be a conventional computer, a distributed computer, or
any other type of computer; the invention is not so limited.

Vertex 4 Vertexz+Break, ,*12>0

US 9,176,732 B2

7

The system bus 690 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, a switched fabric, point-to-point connections,
and a local bus using any of a variety of bus architectures. The
system memory may also be referred to as simply the
memory, and includes read only memory (ROM) 670 and
random access memory (RAM) 680. A basic input/output
system (BIOS) 672, containing the basic routines that help to
transfer information between elements within the general
purpose computer 600 such as during start-up, is stored in
ROM 670. The general purpose computer 600 further
includes one or more hard disk drives or Flash-based drives
620 for reading from and writing to a persistent memory such
as a hard disk, a flash-based drive, and an optical disk drive
630 for reading from or writing to a removable optical disk
such as a CD ROM, DVD, or other optical media.

The hard disk drive 620 and optical disk drive 630 are
connected to the system bus 690. The drives and their asso-
ciated computer-readable media provide nonvolatile storage
of computer-readable instructions, data structures, program
engines and other data for the general purpose computer 600.
It should be appreciated by those skilled in the art that any
type of computer-readable media which can store data that is
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, random access memories
(RAMs), read only memories (ROMs), and the like, may be
used in the example operating environment.

A number of program engines may be stored on the hard
disk 620, optical disk 630, ROM 670, or RAM 680, including
an operating system 682, a minimum cost cycle removal
system 684 such as the one described above, one or more
application programs 686, and program data 688. A user may
enter commands and information into the general purpose
computer 600 through input devices such as a keyboard and
pointing device connected to the USB or Serial Port 640.
These and other input devices are often connected to the
processor 610 through the USB or serial port interface 640
that is coupled to the system bus 690, but may be connected
by other interfaces, such as a parallel port. A monitor or other
type of display device may also be connected to the system
bus 690 via an interface, such as a video adapter 660. In
addition to the monitor, computers typically include other
peripheral output devices (not shown), such as speakers and
printers.

The general purpose computer 600 may operate in a net-
worked environment using logical connections to one or more
remote computers. These logical connections are achieved by
a network interface 650 coupled to or a part of the general
purpose computer 600; the invention is not limited to a par-
ticular type of communications device. The remote computer
may be another computer, a server, a router, a network PC, a
client, a peer device, and typically includes many or all of the
elements described above relative to the general purpose
computer 600. The logical connections include a local-area
network (LAN) a wide-area network (WAN), or any other
network. Such networking environments are commonplace in
office networks, enterprise-wide computer networks, intra-
nets and the Internet, which are all types of networks.

The network adapter 650, which may be internal or exter-
nal, is connected to the system bus 690. In a networked
environment, programs depicted relative to the general pur-
pose computer 600, or portions thereof, may be stored in the
remote memory storage device. It is appreciated that the
network connections shown are example and other means of
and communications devices for establishing a communica-
tions link between the computers may be used.

30

35

40

45

50

55

60

8

The embodiments of the invention described herein are
implemented as logical steps in one or more computer sys-
tems. The logical operations of the present invention are
implemented (1) as a sequence of processor-implemented
steps executing in one or more computer systems and (2) as
interconnected machine or circuit engines within one or more
computer systems. The implementation is a matter of choice,
dependent on the performance requirements of the computer
system implementing the invention. Accordingly, the logical
operations making up the embodiments of the invention
described herein are referred to variously as operations, steps,
objects, or engines. Furthermore, it should be understood that
logical operations may be performed in any order, unless
explicitly claimed otherwise or a specific order is inherently
necessitated by the claim language.

The foregoing merely illustrates the principles of the
invention. Various modifications and alterations to the
described embodiments will be apparent to those skilled in
the art in view of the teachings herein. It will thus be appre-
ciated that those skilled in the art will be able to devise
numerous systems, arrangements and methods which,
although not explicitly shown or described herein, embody
the principles of the invention and are thus within the spirit
and scope of the present invention. From the above descrip-
tion and drawings, it will be understood by those of ordinary
skill in the art that the particular embodiments shown and
described are for purposes of illustrations only and are not
intended to limit the scope of the present invention. Refer-
ences to details of particular embodiments are not intended to
limit the scope of the invention.

What is claimed is:

1. A computer implemented method for optimizing a
directed graph by minimizing a cost of removing at least one
cycle of the directed graph, the method comprising:

utilizing at least one hardware processing unit for:

obtaining the directed graph including at least two ver-
tices and at least one edge at a first computing device,
wherein the at least two vertices of the directed graph
represent at least two operations of a software appli-
cation and the at least one edge of the directed graph
represents a dependency between the at least two

operations;

assigning each vertex in the directed graph a unique
value;

identifying the at least one cycle in the directed graph;
and

determining the at least one edge to remove from the
directed graph by:
obtaining an edge weight for each edge in the directed

graph;

assigning the each edge a binary variable;

generating a linear cost function that is equal to a sum
of the each edge weight multiplied by the corre-
sponding binary variable;

generating a constraint for the each edge that is a
function of the unique value of an ending vertex
minus the unique value of a starting vertex plus a
product of the binary variable associated with the
each edge and a large number wherein the large
number comprises at least double a total number of
edges in the directed graph; and

removing the at least one edge of the directed graph
and the corresponding dependency between the at
least two operations of the software application
according to the linear cost function and the con-
straint.

US 9,176,732 B2

9

2. The method of claim 1, wherein determining the pres-
ence of the at least one cycle in the directed graph comprises:
subtracting the unique value of a first vertex from a second
vertex, wherein an edge starts at the first vertex and ends

at the second vertex; and

comparing a result of the subtraction to zero, wherein a
value less than zero indicates the presence of the at least
one cycle.

3. The method of claim 1, wherein solving for the at least
one edge to remove comprises determining a value of each
binary variable by solving for the at least one edge to remove
using a linear program that utilizes the linear cost function
and the constraint.

4. The method of claim 1, wherein the large number is
double a total number of edges in the directed graph.

5. The method of claim 1, wherein the edge weight for the
each edge in the directed graph comprises a total number of
bits lost as the function of removing the each edge from the
directed graph.

6. The method of claim 1, wherein obtaining the edge
weight for the each edge in the directed graph comprises
assigning the each edge in an un-weighed directed graph an
equal value.

7. The method of claim 1, wherein assigning the each
vertex the unique value comprises:

selecting a first vertex and assigning the first vertex a start-
ing value;

selecting a second vertex connected to the first vertex by an
edge that starts at the first vertex and ends at the second
vertex; and

assigning the second vertex a value that is greater than the
starting value.

8. A system for optimizing a directed graph by minimizing

a cost of removing at least one cycle of the directed graph, the
system comprising:

a computing device including a processor coupled to a
system memory, the system memory storing instructions
for execution on the processor, the instructions config-
ured to cause the processor to:
obtain the directed graph including at least two vertices

and at least one edge at a first computing device,
wherein the at least two vertices of the directed graph
represent at least two operations of a software appli-
cation and the at least one edge of the directed graph
represents a dependency between the at least two
operations;
assign each vertex in the directed graph a unique value;
identify the at least one cycle in the directed graph; and
determine the at least one edge to remove from the
directed graph by:
obtain an edge weight for each edge in the directed
graph;
assign the each edge a binary variable;
generate a linear cost function that is equal to a sum of
each edge weight multiplied by the corresponding
binary variable;
generate a constraint for the each edge that is a func-
tion of the unique value of an ending vertex minus
the unique value of a starting vertex plus a product
of the binary variable associated with the edge and
a large number wherein the large number is set by
the system to be larger than any possible outcome
of a subtraction of the starting vertex value from the
ending vertex value; and
remove the at least one edge from the directed-graph
and the corresponding dependency between the at

5

15

25

30

35

45

65

10

least two operations of the software application
according to the linear cost function and the con-
straint.

9. The system of claim 8, wherein determining a presence
of the at least one cycle in the directed graph comprises:

subtract the unique value of a first vertex from a second

vertex, wherein an edge starts at the first vertex and ends
at the second vertex; and

compare a result of the subtraction to zero, wherein a value

less than zero indicates the presence of the at least one
cycle.

10. The system of claim 8, wherein solving for the at least
one edge to remove comprises determining a value of each
binary variable by solving for the at least one edge to remove
using a linear program that utilizes the linear cost function
and the constraint.

11. The system of claim 8 wherein the large number com-
prises double a total number of edges.

12. The system of claim 8, wherein the edge weight for the
each edge in the directed graph comprises a total number of
bits lost as the function of removing the each edge from the
directed graph.

13. The system of claim 8, wherein obtaining the edge
weight for the each edge in the directed graph comprises
assigning the each edge in an un-weighed directed graph an
equal value.

14. The system of claim 8, wherein assigning the each
vertex the unique value comprises:

select a first vertex and assigning the first vertex a starting

value;

select a second vertex connected to the first vertex by an

edge that starts at the first vertex and ends at the second
vertex; and

assign the second vertex a value that is greater than the

starting value.

15. A computer-implemented method of for optimizing a
directed graph by minimizing a cost of removing at least one
cycle of the directed graph, the method comprising:

obtaining the directed graph including at least two vertices

and at least one edge at a first computing device by a
processor, wherein the at least two vertices of the
directed graph represent at least two operations of a
software application and the at least one edge of the
directed graph represents a dependency between the at
least two operations;

assigning each vertex a unique value;

determining a presence of at least one cycle in the directed

graph by:

subtracting the unique value of a first vertex from a
second vertex, wherein an edge starts at the first vertex
and ends at the second vertex; and

comparing a result of the subtraction to zero, wherein a
value less than zero indicates the presence of the at
least one cycle; and

determining the at least one edge to remove from the

directed graph by:

obtaining an edge weight for each edge in the directed
graph;

assigning the each edge a binary variable;

generating a linear cost function that is equal to a sum of
the each edge weight multiplied by the corresponding
binary variable;

generating a constraint for the each edge that is a func-
tion of the unique value of an ending vertex minus the
unique value of a starting vertex plus a product of the
binary variable associated with the each edge and a

US 9,176,732 B2

11

large number wherein the large number comprises at
least double a total number of edges in the directed
graph; and

removing the at least one edge of the directed graph and
the corresponding dependency between the at least
two operations of the software application according
to a linear program that utilizes the linear cost func-
tion and the constraint and determines a value of each
binary variable to be assessed in removing the at least
one edge.

16. The method of claim 15, wherein the large number is
double a total number of edges.

17. The method of claim 15, wherein the edge weight for
the each edge in the directed graph comprises a total number
of bits lost as a function of removing the edge from the
directed graph.

18. The method of claim 15, wherein obtaining the edge
weight for the each edge in the directed graph comprises
assigning the each edge in an un-weighed directed graph an
equal value.

19. The method of claim 15, wherein assigning the each
vertex the unique value comprises:

selecting the first vertex and assigning the first vertex a

starting value;

selecting the second vertex connected to the first vertex by

an edge that starts at the first vertex and ends at the
second vertex; and

assigning the second vertex a value that is greater than the

starting value.

5

10

15

20

25

30

12

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,176,732 B2 Page 1 of 1
APPLICATION NO. : 14/012799

DATED : November 3, 2015

INVENTORC(S) : Chakraborty et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS
In claim 15,
-column 10, line 37, delete “of”

Signed and Sealed this
First Day of March, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

